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Motivation

The Forest Inventory and Analysis (FIA) program of the US Forest
Service has systematically collected data from forest inventory plots
across the US for more than 20 years.
These data include estimates of forest biomass, which is an important
metric for monitoring forest carbon and climate change.
FIA plots are measured on a rotating basis every 5 years, creating a
spatio-temporal dataset with both observed and unobserved data.
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Motivation

Plot 1998 1999 2000 2001 2002 2003 2004 2005
1 20.1
2 30.8 32.4
3 19.5
4 36.2 35.0
5 29.4 28.3
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Objectives

Develop a dynamic space-time regression model that:
estimates plot-level forest biomass data for FIA plots in Maine, USA
with associated uncertainty quantification for all plot locations and
years,
incorporates wall-to-wall covariates (i.e. remotely sensed data),
dynamically characterizes the spatial dependence between FIA biomass
measurements over time,
utilizes an efficient low-rank approximation for the spatial process (i.e.
Predictive Process).
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Model Notation

let the data be observed at locations S = {s1, s2, . . . , sn} and at time
points 1, 2, . . . , T
we assume that there is missing/unobserved data
yt(s) denotes the plot-level biomass at location s and time t
z(s) is the q × 1 time independent fixed effect covariate (i.e. average
climate, etc.) observed at location s, γ is the corresponding q × 1
coefficient vector
xt(s) is the p × 1 time dependent fixed effect covariate (i.e. NDVI,
etc.) observed at location s at time t, βt is the corresponding p × 1
coefficient vector
also let It(s) denote the indicator variable denoting if the data is
observed at location s at time t

JSM 2023 5 / 19



Model Definition

The model is defined as

yt(s) = z(s)′γ + xt(s)′βt + ut(s) + ϵt(s), ϵt(s) iid∼ N(0, τ2
t ) if It(s) = 1

βt = βt−1 + ηt , ηt
iid∼ N(0, Ση), β0 ∼ N(m0, Σ0), γ ∼ N(m, Σ)

ut(s) = ut−1(s) + wt(s), wt(s) iid∼ GP(0, Ct(·, θt))
u0(s) = 0, for t = 1, 2, . . . , T and generic location s

with hyper priors: τ2
t

iid∼ IG(aτ , bτ ), Ση ∼ IW (rη, Ωη), θt
iid∼ pt(θt)
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Predictive Process and NNGP

the Guassian process used to model the spatial random effects can be
replaced by a lower dimensional approximation to ease computation
the predictive process model (motivated from kriging) approximates
the parent (full) process through a linear combination of ’knots’,
forming a low rank covariance matrix
the nearest neighbor Gaussian process (NNGP) model generates a
sparse covariance matrix through a ’screening effect’ by considering m
nearest neighbors
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Model Implementation

We assume an exponential spatial covariance function of the form

Ct(s1, s2; θt) = σ2
t exp(−ϕt ||s1 − s2||)

where θt = {σ2
t , ϕt} with spatial variance σ2

t and spatial decay ϕt
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Model Implementation

these prior specifications lead to a well-defined Bayesian hierarchical
model
Bayesian inference proceeds through a Gibbs sampling algorithm with
random-walk Metropolis steps for spatial covariance parameters
full GP and predictive process models are called from the spBayes R
package
samplers are written in C++ using LAPACK and BLAS linear algebra
subroutines
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Simulation

single temporally-varying intercept
T = 21 years
n = 400 locations (single county in Maine, USA)
6,795 of 8,400 plot-year combinations (80.9%) are unobserved
consider nonspatial, predictive process (25 knots), and full GP models
parameter estimates summarized from 2,500 post burn-in posterior
samples
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Preliminary Results
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Preliminary Results
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Preliminary Results
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Preliminary Results
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Application Data

FIA plot-level biomass measurements
collected from 1999 - 2019
n = 2,713 plot locations
10,833 total observations

Landsat Normalized Difference Vegetation Index (NDVI)
annual composite images from 1999 - 2019
quantifies vegetation greenness and represents vegetation density

LandTrendr
spectral-temporal segmentation algorithm for detecting change from
satellite imagery (Landsat)
identifies and quantifies forest disturbance from annual image
composites
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Next Steps

make predictions of forest biomass at arbitrary locations and times
within the spatio-temporal domain
implement NNGP for spatial random effect
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