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Motivation

The United Nations require annual
reporting of greenhouse gas emissions
from five sectors:

Energy
Industry
Agriculture
Forestry
Waste

The quality of these reports relies on
the data and methods used to make
estimates.

Source: Eggleston et al. (2006)
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Motivation

The Forest Inventory and Analysis
(FIA) program of the US Forest
Service measures forest carbon at
inventory plots for different carbon
“pools”.

Live trees

Dead trees

Leaf litter

Soil

Interested in status, trend, and
change estimates at fine spatial and
temporal scales (i.e., annual
county-level estimates).
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Data

Carbon density measurements for each pool are collected on a
rotating basis from inventory plots.
Direct estimates are calculated at the county level for years 2008 –
2021.
Due to sparseness of inventory plots and the small areas of interest,
direct estimates may be missing for some counties/years.
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Data

Uncertainty in direct estimates from few inventory plots and/or
measurement variation within a given county.
Auxiliary data such as remotely sensed tree canopy cover (TCC) may
be informative as a covariate.
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Objectives

Develop a dynamic, non-stationary, multivariate spatio-temporal
model that:

accommodates spatial and temporal dependence between pools,

acknowledges dependence among pools, while allowing non-stationary
correlations,

incorporate uncertainty stemming from direct estimates due to sample
size and/or variability in measurements,

leverages available spatially and/or spatio-temporally varying predictors

provides improved carbon density estimates for each pool in all
counties/years.
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Direct Estimates

Let ym,i ,j,t be the measured carbon density for the mth carbon pool from
the i th plot in county j at time t, with m = 1, . . . , M, i = 1, . . . , nm,j,t ,
j = 1, . . . , J , and t = 1, . . . , T .

The direct estimate of the mean carbon density of pool m in county j at
time t is

µ̂m,j,t = 1
nm,j,t

nm,j,t∑
i=1

ym,i ,j,t (1)

with associated variance

σ̂2
m,j,t = 1

nm,j,t(nm,j,t − 1)

nm,j,t∑
i=1

(ym,i ,j,t − µ̂m,j,t)2 (2)

Missingness occurs when nm,j,t = 0, nm,j,t = 1, or all measurements with a
county/year are equal.
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Direct Estimates
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Direct Estimates
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Proposed Model

For county j at time t, we are interested in the length M vector of latent
means µj,t = (µ1,j,t , . . . , µM,j,t)⊤.

We leverage direct estimates µ̂j,t = (µ̂1,j,t , . . . , µ̂M,j,t)⊤ and
σ̂2

j,t = (σ̂2
1,j,t , . . . , σ̂2

M,j,t)⊤, along with auxiliary data available for each
county and time, Xj,t .

The proposed Fay–Herriot (FH) model is

µ̂j,t = µj,t + δj,t (3)
µj,t = Xj,tβj + uj,t + εj,t (4)
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Proposed Model

Model Components:

µ̂j,t = µj,t + δj,t (3)
µj,t = Xj,tβj + uj,t + εj,t (4)

δj,t
ind∼ MVN(0, Σδ,j,t) Direct estimate error term.

Xj,t M × MP block diagonal matrix of P many predictor variables.
βj length MP vector of county-varying regression coefficients.
uj,t length M vector of county- and time-varying intercepts.

εj,t
iid∼ MVN(0, Σε) Latent error term.
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Spatio-temporal intercept

For t = 1, . . . , T ,

uj,t = uj,t−1 + wj,t , (uj,0 ≡ 0) (5)
wj,t = Avj,t (6)

A is the cholesky square root of the spatial random effects cross
covariance matrix.
Elements of vj,t = (v1,j,t , . . . , vM,j,t)⊤ are modeled asvm,1,t

...
vm,J,t

 ∼ MVN
(
0, Q(ρv ,m,t)−1

)
, m = 1, . . . , M (7)

where Q(ρv ,m,t)−1 is a CAR correlation matrix with spatial correlation
parameter ρv ,m,t (Besag, 1974).
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Spatially-varying coefficient

We have βj = (β1,1,j , . . . , βM,P,j)⊤.

The elements of βj are again modeled using the CAR structure

βm,p,1
...

βm,p,J

 ∼ MVN
(
0, τ2

β,m,pQ(ρβ,m,p)−1
)

,
m = 1, . . . , M
p = 1, . . . , P (8)

where τ2
β,m,pQ(ρβ,m,p)−1 is the CAR covariance matrix with scalar

variance τ2
β,m,p and spatial correlation parameter ρβ,m,p.
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Direct estimate variance

We consider Σδ,j,t = diag
(
σ2

1,j,t , . . . , σ2
M,j,t

)
. where each σ2

m,j,t is given an

Inverse Gamma prior of the form

σ2
m,j,t ∼ IG

(
nm,j,t

2 ,
(nm,j,t − 1)σ̂2

m,j,t
2

)
(9)

for m = 1, . . . , M.
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Proposed Model

Latent error:
A basic specification assumes Σε = diag(σ2

ε,1, . . . , σ2
ε,M), with each σ2

ε,m
following an Inverse Gamma prior.

Priors:
Finally, we specify vague Inverse Gamma priors for variance terms τ2’s,
Uniform(0, 1) priors on spatial dependence parameters ρ’s, and an Inverse
Wishart prior on AA⊤.

Posterior samples are generated using Gibbs sampling for parameters with
explicit full conditional distributions, and Metropolis steps for all other
parameters.
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Preliminary Results Setting
Data: Live and dead tree carbon density in Washington, Oregon, and
Idaho from 2008 – 2021.

We do not implement space varying coefficients βj , but do
incorporate dynamically evolving coefficients βt .

βt = βt−1 + ηt (10)
ηt ∼ MVN(0, Ση) (11)
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Preliminary Results
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Preliminary Results
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Preliminary Results
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Preliminary Results
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Preliminary Results
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2020 Archie Creek Wildfire
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Preliminary Results
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Preliminary Results
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Next Steps

Extend to entire CONUS

Incorporate space-varying
regression coefficient for TCC.

Allow A to vary spatially Aj
and, perhaps, temporally Aj,t .

Other carbon pools (down
woody material, leaf litter, soil,
etc.)
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