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Figure 1: Shannon et al. (2024)
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Figure 2: dasdsaf
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Overview and motivation

United Nations Framework Convention on Climate Change
(UNFCCC) requires annual greenhouse gas (GHG) emission estimates
(with uncertainty quantification) from five sectors:

▶ Energy
▶ Industry
▶ Agriculture
▶ Forestry
▶ Waste

Forest carbon estimates are based on National Forest Inventory (NFI)
data and estimators. The US NFI is conducted by the USDA Forest
Service Forest Inventory and Analysis (FIA) program.
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Figure 3: Mcroberts et al. (2005)
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Figure 4: Perry et al. (2009)
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Overview and motivation

NFI programs traditionally use design-based inference based on
probability sampling and associated estimators to deliver forest
parameter estimates—typically estimates for status parameters.

Depending on the desired level of estimate precision, such approaches
often require costly measurements over a network of inventory plots.

Increased demand for estimates within smaller spatial, temporal, and
biophysical extents than design-based inference can reasonably deliver
using current methods.

Developing model-based small area estimation (SAE) methods using
NFI data is an active area of research, with considerable progress
made in the last several years (Hou et al., 2021; Coulston et al., 2021;
Schroeder et al., 2014; Lister et al., 2020; May et al., 2023; Finley
et al., 2024).
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Inferential goals
Provide CONUS county estimates of live aboveground forest carbon
density for 2008-2021 using FIA county-level direct (i.e., design-based)
estimates.

Desired qualities of the estimator:
1 leverage spatially and temporally proximate information from FIA

county estimates and ancillary data to improve estimate accuracy and
precision,

2 provide robust and flexible uncertainty quantification,

3 facilitate statistically defensible exploration of carbon status, trend,
and change,

4 accommodate missing direct estimates,

5 scale to allow for a large number of areal units and time steps.
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Inferential route

SAE methods can generally be classified into unit-level and area-level
models.

Unit-level models are constructed at the level of population units,
where a population unit is defined as the minimal unit that can be
sampled from a population. Unit-level models typically relate
outcome variable measurements on sampled population units to
auxiliary data that is available for all population units. Prediction for
a small area is achieved by aggregating unit-level predictions within
the given areal extent see, e.g., Finley et al. (2024).

Area-level models are constructed across areal units where
relationships are built between area-specific outcome direct estimates
(e.g., generated using design-based estimators) and auxiliary data
(Rao and Molina, 2015). Hence, area-level models effectively “adjust”
direct estimates given auxiliary information.
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Data

Data for CONUS 2008-2021:
1 100k+ plot-level aboveground live tree carbon measurements

expressed on as Mg/ha,
2 a complete set of annual county-level predictor variables.

Let yi ,j,t represent the observed carbon density for FIA plot i in county j
and year t, where i = 1, . . . , nj,t , j = 1, . . . , J , and t = 1, . . . , T , with nj,t
being the number of FIA plots measured in county j and year t.

We consider J = 3108 counties and T = 14 years.

A set of p annual county-level predictors xk,j,t for k = 1, . . . , p.
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Data

Figure 5: Number of observed FIA plots within each county and year. Transparent
counties have zero observed FIA plots (nj,t).
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Data

Figure 6: Annual National Land Cover Database percent tree canopy cover (TCC)
averaged within each county.
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Direct estimates

We assume FIA data are SRS within county and year. When nj,t ≥ 1 the
direct estimate for the population mean is

µ̂j,t = 1
nj,t

nj,t∑
i=1

yi ,j,t . (1)

and when nj,t ≥ 2 the estimate variance for (1) is

σ̂2
j,t = 1

nj,t(nj,t − 1)

nj,t∑
i=1

(yi ,j,t − µ̂j,t)2. (2)
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Direct Estimates

Figure 7: Percent of missing direct estimates across all years.
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Proposed SAE model

The model we propose is an extension to the traditional Fay-Herriot
model. For county j at time t the model is

µ̂j,t = µj,t + δj,t , (3)

µj,t = β0 + η0,j,t +
p∑

k=1
xk,j,tβk +

q∑
k=1

x̃k,j,tηk,j,t + ϵj,t , (4)

where δj,t and ϵj,t are mutually exclusive error terms with δj,t
ind∼ N(0, σ2

j,t)
and ϵj,t

iid∼ N(0, σ2
ϵ ).

Here, δj,t ’s variance σ2
j,t ∼ IG

(
nj,t
2 ,

(nj,t−1)σ̂2
j,t

2

)
. Modeling σ2

j,t in this way
provides a more coherent hierarchical model and allows us to obtain
potential information from the observed sample size nj,t .
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Spatial random effects

Consider specifications for the (q + 1) spatial and temporal random
effects, i.e., intercept and q for those predictor variables with space-
and/or time-varying relationships with the outcome.

We define a J × 1 vector of spatial random effects as

ηs ∼ MVN
(
0, σ2

ηs R(ρηs )
)

, (5)

where σ2
ηs is the scalar variance, ρηs is the correlation parameter, and

R(ρηs ) = (D − ρηs W)−1 is the J × J correlation matrix reflecting a
conditional autoregressive (CAR) spatial structure, see, e.g., Banerjee
et al. (2004).
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Spatial random effects

Figure 8: σ2
ηs = 1 and ρηs = 0.2. Figure 9: σ2

ηs = 1 and ρηs = 0.99.
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Temporal random effects

When collecting all N = JT space and time observations (stacked by
county), we define a N × 1 vector of temporal random effects as

ηt ∼ MVN
(
0, σ2

ηt I ⊗ A(αηt )
)

, (6)

where σ2
ηt is a scalar variance, I is a J × J identity matrix, ⊗ is the

Kronecker product operator, and A(αηt ) is a T × T first order
autoregressive correlation matrix with temporal correlation parameter αηt .

This specification allows for county-specific temporal effects, but does not
accommodate spatial association between counties.
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Temporal random effects

Figure 10: σ2
ηt = 1 and αηt = 0.8.
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Spatio-temporal random effects

Finally, we define a N × 1 vector of spatial-temporal random effects as

ηst ∼ MVN
(
0, σ2

ηst R(ρηst ) ⊗ A(αηst )
)

, (7)

where σ2
ηst is a scalar variance, and all other terms were defined previously.

This specification allows for a county-specific spatial effect to evolve over
time.
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Spatio-temporal random effects

Figure 11: σ2
ηst = 1, ρηst = 0.99, and αηst = 0.8.
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Candidate models

In subsequent analyses, we consider the following candidate models for
µj,t .

Each model uses a single predictor variable xTCC ,j,t , which is percent tree
canopy cover (TCC) per county and year (Housman et al., 2023).

Full model: µj,t = β0 + ηst
0,j,t + xTCC,j,tβTCC + x̃TCC,j,tη

s
TCC,j + ϵj,t

Submodel 1: µj,t = β0 + ηst
0,j,t + xTCC,j,tβTCC + ϵj,t

Submodel 2: µj,t = β0 + ηt
0,j,t + xTCC,j,tβTCC + ϵj,t
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Full Model
To complete the Bayesian model specification, we assign prior distributions to the model
parameters. For the full model, the joint posterior distribution for all parameters is
proportional to

J∏
j=1

T∏
t=1

N
(
µ̂j,t | µj,t , σ2

j,t

)
×

J∏
j=1

T∏
t=1

N
(

µj,t | β0 + ηst
0,j,t +

p∑
k=1

xk,j,tβk +
q∑

k=1
x̃k,j,tη

s
k,j , σ2

ϵ

)
×

p∏
k=0

N
(
βk | µβ, σ2

β

)
×

J∏
j=1

T∏
t=1

IG
(

σ2
j,t | nj,t

2 ,
(nj,t − 1) σ̂2

j,t
2

)
× IG

(
σ2

ϵ | aϵ, bϵ

)
×

MVN
(
ηst

0 | 0, σ2
ηst R(ρηst ) ⊗ A(αηst )

)
×

IG
(
σ2

ηst
0

| aηst
0

, bηst
0

)
× U

(
ρηst

0
| aρ, bρ

)
× U

(
αηst

0
| aα, bα

)
×

q∏
k=1

MVN
(
ηs

k | 0, σ2
ηs

k
R(ρηs

k
)
)

×
q∏

k=1
IG
(
σ2

ηs
k

| aηs , bηs

)
×

q∏
k=1

U
(
ρηs

k
| aρ, bρ

)
. (8)
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Simulation Study

A single population is generated using fixed and known values for
parameters, then estimates for parameters are computed from each of
a large number of independent samples, i.e., R replicates, taken from
the population.
Estimates are then compared with population parameters using a set
of measures that assess the estimators’ bias, accuracy, and precision.
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Simulation Study

To mimic qualities of the observed annual county-level data, we
simulated a population comprising 7,809,952 point-referenced
population units laid out in a 1-by-1 (km) regular grid over the
CONUS land area.
Specifically, the outcome yt(ℓ) at generic population unit location ℓ
and time t is given by

yt(ℓ) = ζ0 + ut(ℓ) + ζ1vTCC ,t(ℓ) + ϵt(ℓ), ϵt(ℓ) iid∼ N(0, σ2
y ),

ut(ℓ) = ut−1(ℓ) + wt(ℓ), u0(ℓ) = 0,

wt(ℓ) ind∼ GP(0, C(·, γ)), t = 1, 2, . . . , T ,

C(·, γ) = σ2
w exp(−γ||ℓ − ℓ′||)
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Simulation Study

Figure 12: Simulated population forest carbon density µtrue,t,j (Mg/ha).
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Simulation Study

Given µtrue,j,t and R estimates from each estimator,

Biasj,t,l =
∑R

r=1 (µj,t,l ,r − µtrue,j,t)
R , (9)

RMSEj,t,l =

√∑R
r=1 (µj,t,l ,r − µtrue,j,t)2

R . (10)

Coveragej,t,l =
∑R

r=1 I
(
µL

j,t,l ,r ≤ µtrue,j,t ≤ µU
j,t,l ,r

)
R , (11)

Widthj,t,l =
∑R

r=1

(
µU

j,t,l ,r − µL
j,t,l ,r

)
R . (12)
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Figure 13: Point values represent averages over R replicates for a county and
year. A loess line is added to indicate trends across sample size (nj,t).
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Figure 14: Simulated µtrue,j,t values and estimates based on sample data from the
first replicate.

STT Student Seminar February 7, 2025 29 / 45



Table 1: Parameter estimates for candidate models fit to FIA data. Estimates are posterior medians with
95% credible intervals given in parentheses. Estimates for WAIC and associated statistics are given in the last
several rows. The last row holds the estimated êlpdWAIC difference with the “best” fitting Submodel 1 and
associated standard error τ̂diff in parentheses.

Candidate models

Parameter Submodel 2 Submodel 1 Full model

β0 18.15 (17.92, 18.38) 18.39 (18.00, 18.79) 13.83 (12.48, 15.13)
βTCC 15.27 (15.04, 15.53) 18.43 (18.16, 18.83) 16.08 (15.05, 17.18)
αηt

0
0.9982 (0.9979, 0.9985) - -

σ2
ηt

0
75.73 (71.61, 80.29) - -

ρηst
0

- 0.9995 (0.9990, 0.9998) 0.9996 (0.9993, 0.9998)
αηst

0
- 0.9966 (0.9961, 0.9972) 0.9969 (0.9963, 0.9975)

σ2
ηst

0
- 140.37 (130.31, 150.30) 86.81 (79.14, 94.11)

ρηs
TCC

- - 0.9999 (0.9995, 1.0000)
σ2

ηs
TCC

- - 34.71 (28.55, 41.29)
σ2

ϵ 0.70 (0.61, 0.79) 0.59 (0.54, 0.66) 0.56 (0.51, 0.63)

êlpdWAIC -113123.6 -112481.2 -112496.2
p̂WAIC 7078.1 6622.7 6461.9
WAIC 226247.3 224962.4 224992.4
êlpddiff -642.5 (51.9) 0 (0) -15.0 (22.2)
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FIA analysis

Figure 15: Full model’s β0 + ηs,t
0,j,t .
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FIA analysis

Figure 16: Full model’s βTCC + ηs
TCC ,j (i.e., strong evidence of a nonstationary

relationship between TCC and carbon density). TCC was scaled and centered.
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Figure 17: Full model’s µj,t posterior mean.
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Figure 18: Full model’s µj,t posterior standard deviation.
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Figure 19: Direct and Full model estimates of µ̂j,t and µj,t , respectively, for a few
county j ’s and t = 1, . . . , T , along with associated 95% confidence and credible
intervals.
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Figure 20: Posterior mean of linear trend in carbon Mg/ha/year over 2008-2021.
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Table 2: Ten largest decreasing and increasing estimates of total carbon trends (Tg/year) from 2008 to
2021 across the CONUS. Estimates are posterior medians with 95% credible interval values given in
parentheses.

Decreasing Increasing

State County Carbon State County Carbon

Idaho Idaho -0.92 (-1.41, -0.45) Maine Aroostook 0.71 (0.35, 1.05)
California Siskiyou -0.92 (-1.33, -0.48) Minnesota St. Louis 0.64 (0.34, 0.96)
California Shasta -0.7 (-0.98, -0.44) Maine Piscataquis 0.57 (0.31, 0.83)
Washington Okanogan -0.69 (-1.00, -0.36) Maine Penobscot 0.49 (0.29, 0.68)
Oregon Douglas -0.47 (-0.87, -0.11) Maine Washington 0.46 (0.26, 0.64)
California Mariposa -0.45 (-0.60, -0.29) Maine Somerset 0.44 (0.22, 0.66)
California Tuolumne -0.45 (-0.61, -0.28) Alabama Baldwin 0.29 (0.19, 0.40)
California Lake -0.43 (-0.56, -0.30) Maine Hancock 0.27 (0.14, 0.40)
California Trinity -0.43 (-0.67, -0.20) Minnesota Cook 0.25 (0.08, 0.43)
California Fresno -0.42 (-0.73, -0.11) Minnesota Itasca 0.24 (0.07, 0.42)
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FIA analysis
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FIA analysis

Figure 21: Timber damage from Hurricane Michael. Photo courtesy of Jarek
Nowak, Ph.D., Florida Forest Service.
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FIA analysis

Figure 22: FIA regions used to compute county aggregate total estimates given in
Figure 23.
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Figure 23: Annual carbon within FIA regions shown in Figure 22. Point and bars
are the Posterior median and 95% credible interval.
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FIA analysis

Table 3: Left column, model estimated carbon trend by FIA region from 2008 to
2021. Right column, model estimated total carbon change by FIA region between
2008 and 2021. Estimates are medians with 95% credible interval values given in
parentheses.

FIA Region Trend (Tg/year) Change (Tg)

Northern -1.94 (-6.74, 3.42) 43.03 (-43.05, 137.98)
Pacific Northwest -9.55 (-14.71, -5.34) -101.01 (-186.91, -23.12)
Rocky Mountain -12.86 (-19.46, -6.13) -137.03 (-285.29, -1.29)
Southern 44.32 (36.83, 50.55) 660.45 (534.73, 781.08)
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Summary and next steps

Promising initial modeling results in terms of uncertainty
quantification and spatial and temporal trend detection.

Continuing with simulation study to assess model’s inferential pros
and cons.

Considering extensions for carbon change attribution.

Extending this or other spatio-temporal models to accommodate
multiple carbon pools.
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Thank you
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