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Motivation

The United Nations Framework Convention on Climate Change
(UNFCCC) requires annual greenhouse gas (GHG) emission estimates
(with uncertainty quantification) from five sectors:

Energy
Industry
Agriculture
Forestry
Waste
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National Forest Inventory and FIA

Forest carbon estimates are based on National Forest Inventory
(NFI) data and estimators.

The US NFI is conducted by the USDA Forest Service Forest
Inventory and Analysis (FIA) program.

FIA maintains 300,000 inventory plots across the contiguous US
(CONUS), which are measured on rotating basis every 5 to 10
years.
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FIA Design

Figure 1: FIA sampling design (May and Finley, 2025).
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Design-based Estimation

Traditionally, NFI programs provide design-based estimates for
forest parameters based on forest inventory plot measurements.

Design-based estimates assume a fixed finite population, with
population parameters accessible without error if all population
units are observed.

To achieve desired levels of estimate precision, these methods
require repeated costly measurements from a dense network of
inventory plots.

Given the high costs associated with data acquisition, FIA plot
measurements are sparse, limiting reliable design-based estimates
to large spatial and temporal scales.
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Demand for Small Area Estimates
Increasingly, users groups require higher spatial and temporal
resolution forest status and change parameter estimates to evaluate
existing land use policies and management practices, and inform future
activities.

FIA has made it a priority to deliver statistically rigorous annual
county-level estimates of forest parameters to support user needs.
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Small Area Estimation

Model-based small area estimation (SAE) methods have gained
attention for estimating forest parameters in data-sparse settings
(Schroeder et al., 2014; Lister et al., 2020; Hou et al., 2021;
Coulston et al., 2021; Finley et al., 2024; Shannon et al., 2024)

SAE methods employ statistical models to relate forest response
variables to auxiliary data.

Accuracy and precision are improved over design-based approaches
when strong relationships exist between response variables and
auxiliary information.
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Inferential Objectives, Models, and Data

We seek SAE models to estimate the parameters of interest at desired
spatial and/or temporal resolutions, e.g., status at a given time or
change over time for user-defined small areas.

Model formulation depends on the inferential objectives and the
assumed data generating process.
From a practical standpoint, model formulation also depends data
availability.

We formulate models presumed to capture the underlying data
generating process and tailored to match available data.

We are curious about how quality of inference changes given varying
degrees of information.
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Figure 2: Data generation settings.
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Figure 3: Data observation settings corresponding to Figure 2.
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Unit-level vs. Area-level SAE methods

Unit-level models are
constructed at the population
unit level (inventory plots),
which is the minimal unit that
can be sampled from a
population.

Area-level models
characterize the relationship
between area-specific
(design-based) direct estimates
and auxiliary data.

ESM University of Michigan April 4, 2025 12 / 56



Motivating Data and Estimates
Investigate spatio-temporal SAE models for forest parameters of
interest under different data/model settings (Figures 2 and 3).

We focus on live above ground carbon (carbon) (Mg/ha), which is
estimated as part of the FIA NFI.

Our latent parameter of interest is annual mean carbon (Mg/ha)
for each county in the CONUS from 2008-2021.
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Continuous Space-time Unit-level Model Notation

Assume unit-level mean carbon measurements are
generated from a continuous spatio-temporal
process. Let

y(s, t) be the mean carbon (Mg/ha) at
spatial coordinate s and time t.

x(s, t) be a length P + 1 vector of covariates
associated with y(s, t), where the first
element of x(s, t) is 1.

µj,ℓ be the mean carbon for county j and
year ℓ, where j = 1, . . . , J and ℓ = 1, . . . , L.

Aj be the spatial area constituting county j.
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Continuous Space-time Unit-level Model
The proposed continuous space-time unit-level spatio-temporal SAE
model is

y(s, t) = µ(s, t) + δ(s, t),
µ(s, t) = x(s, t)Tβ(t) + u(s, t) + ε(s, t)
βp(t) ∼ GPT(mβp , Cβ(·, θβp)), p = 1, . . . , P + 1,

u(s, t) ∼ GPST(0, Cu(·, θu)),

(1)

where
δ(s, t) iid∼ N

(
0, σ2

j

)
for s ∈ Aj .

ε(s, t) iid∼ N(0, τ2
ℓ ) for ℓ − 0.5 < t < ℓ + 0.5.

β(t) = (β1(t), . . . , βP +1(t))T is a vector of regression coefficients
whose pth element follows a temporal GP.

u(s, t) is a random intercept following a spatio-temporal GP with
covariance function Cu(·, θu).
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Modeling Covariates

Often, covariates x(s, t) are not available for all s and t, so we can
extend (1) as

y(s, t) = µ(s, t) + δ(s, t),
µ(s, t) = x(s, t)Tβ(t) + u(s, t) + ε(s, t)
x(s, t) ∼ GPST(mx, Cx(·, θx)),
βp(t) ∼ GPT(mβp , Cβ(·, θβp)), p = 1, . . . , P + 1,

u(s, t) ∼ GPST(0, Cu(·, θu)),

(2)

where
GPST(mx, Cx(·, θx)) is a spatio-temporal GP with mean function
mx and covariance function Cx(·, θx) taking parameters θx.
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Spatio-temporal Random Intercept

We model u(s, t) ∼ GPST(0, Cu(·, θu)) as a mean-zero spatio-temporal
GP with covariance function Cu(·, θu).

For locations s1 and s2 and times t1 and t2, the covariance between
u(s1, t1) and u(s2, t2) might be modeled using a nonseparable
covariance function, e.g.,

σ2
u

(au|r|2 + 1)κu
exp

( −cu||h||
(au|r|2 + 1)κu/2

)
(3)

where r = |t1 − t2| and h = ||s1 − s2|| are the time and space euclidean
norms, respectively, and θu = (σ2

u, au, cu, κu). See Datta et al. (2016)
for details.
A better option is a multi-resolution space-time covariance function
recently explored by May and Finley (2025).
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Estimating µj,ℓ

Estimates of µj,ℓ from fitted models (1) or (2) are obtained via
block kriging.

For county j in year ℓ, the fitted model is used to predict µ(s, t)
for a dense grid of points Pj,ℓ, where each prediction point has
s ∈ Aj and ℓ − 0.5 < t < ℓ + 0.5.

The block kriging estimate for µj,ℓ is then

µ̂j,ℓ = 1
|Pj,ℓ|

∑
(s,t)∈Pj,ℓ

µ(s, t). (4)
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Dynamic Unit-level Model Notation

Assume unit-level mean carbon measurements are
generated from a continuous spatial process,
which evolves dynamically over discrete time. Let

yℓ(s) be the mean carbon (Mg/ha) at spatial
coordinate s in year ℓ.

xℓ(s) be a length P + 1 vector of covariates
associated with yℓ(s), where the first element
of xℓ(s) is 1.
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Dynamic Unit-level Model
The proposed dynamic unit-level spatio-temporal SAE model is then

yℓ(s) = µℓ(s) + δℓ(s),
µℓ(s) = xℓ(s)Tβℓ + uℓ(s) + εℓ(s),

βℓ = βℓ−1 + ξℓ, ξℓ ∼ MV N (0, Σξ) ,

uℓ(s) = uℓ−1(s) + ωℓ(s), ωℓ ∼ GPS(0, Cω(·, θℓ)),
u0(s) ≡ 0 ∀s

(5)

where
δℓ(s) iid∼ N

(
0, σ2

j

)
for s ∈ Aj .

εℓ(s) iid∼ N(0, τ2
ℓ ).

β0 ∼ MV N(µ0, Σ0).

Estimates of µj,ℓ are obtained via (4).
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Plot-aggregate Dynamic Models

To protect private forest land information and preserve the ecological
integrity of the plots, exact plot locations are not publicly available for
most NFIs. Two cases are common:

1 Unit-level measurements can often still be
associated with areas of interest, and may be
modeled directly (Shannon et al., 2025),

2 Traditionally, SAE methods such as the
Fay-Herriot model (Fay and Herriot, 1979)
model aggregated direct estimates for small
areas of interest (Shannon et al., 2024).
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Dynamic Unit-level Plot-aggregate Model Notation

Assume unit-level mean carbon measurements are
generated from a discrete spatial random field,
which evolves dynamically over time. Exact plot
locations are not known, but measurements are
associated with discrete areas. Let

yi,j,ℓ be the mean carbon (Mg/ha) at for
inventory plot i in county j in year ℓ, where
i = 1, . . . , nj,ℓ.

xj,ℓ be a length P + 1 vector of covariates
associated with county j in year ℓ, where the
first element of xj,ℓ is 1.

Note, we may have nj,ℓ = 0.
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Dynamic Unit-level Plot-aggregate Model
The model proposed by Shannon et al. (2025) is

yi,j,ℓ = xT
j,ℓβℓ + x̃T

j,ℓηj + uj,ℓ︸ ︷︷ ︸
µj,t

+εi,j,ℓ, i = 1, . . . , nj,t,

βℓ = βℓ−1 + ξℓ, ξℓ ∼ MV N (0, Σξ) ,

uj,ℓ = uj,ℓ−1 + ωj,ℓ, ωℓ ∼ MV N
(
0, τ2

ω,tQ(ρω)
)

,

uj,0 ≡ 0 ∀j = 1, . . . , J ,

(6)

where
εi,j,ℓ

ind∼ N(0, τ2
ℓ ).

x̃j,ℓ is a length Q ≤ P subvector of covariates in xj,ℓ.
ηj is a length Q vector of county-varying regression coefficients.
β0 ∼ MV N(µ0, Σ0).
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County-varying Regression Coefficients ηj

The elements of ηj in (6) represent county-varying regression
coefficients for covariates in x̃j,ℓ, which follow a conditional
autoregressive (CAR) model structure (Banerjee et al., 2004).
Writing ηj = (η1,j , . . . , ηQ,j)T and collecting η∗

q = (ηq,1, . . . , ηq,J )T,
the CAR spatial structure for η∗

q is specified as

η∗
q ∼ MV N

(
0, τ2

η,qQ(ρη,q)
)

, q = 1, . . . , Q, (7)

where
τ2

η,q is a scalar variance parameter.
ρη,q is a spatial correlation parameter (0 < ρη,q < 1).
Q(ρη,q) = (D − ρη,qW)−1 is a J × J correlation matrix.
W is a binary spatial adjacency matrix with wj,j = 0 for all j.
D = diag(rowSums(W)).
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Dynamic spatio-temporal intercept uj,ℓ

The spatio-temporally varying intercept term uj,ℓ in (6) is modeled
as a dynamically evolving CAR spatial random effect.

uj,ℓ = uj,ℓ−1 + ωj,ℓ, (8)

We model uℓ = (u1,ℓ, . . . , uJ ,ℓ)T as a dynamically evolving CAR
spatial random effect.
Collecting all ωj,ℓ for year ℓ as ωℓ = (ω1,ℓ, . . . , ωJ ,ℓ)⊤, we specify a
CAR spatial structure for ωℓ as

ωℓ ∼ MV N
(
0, τ2

ω,ℓQ(ρω)
)

. (9)

Alternatively, continuous spatial structures such as GPs could be used
to model ωℓ over county centroids.
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Priors and Likelihood
The joint posterior distribution for all parameters in model (6) is then proportional to
the product of the likelihood times priors, which is given as

L∏
ℓ=1

J∏
j=1

nj,ℓ∏
i=1

N
(
yi,j,ℓ | xT

j,ℓβℓ + x̃T
j,ℓηj + uj,ℓ, σ2

ℓ

)
×

L∏
ℓ=1

IG
(
σ2

ℓ | aσ, bσ

)
×

MV N (β0 | µ0, Σ0) ×
L∏

ℓ=1
MV N

(
βℓ | βℓ−1, Σξ

)
× IW (Σξ | νξ, Hξ) ×

Q∏
q=1

MV N
(
η∗

q | 0, τ2
η,qQ(ρη,q)

)
×

Q∏
q=1

IG
(
τ2

η,q | aη,q, bη,q

)
×

Q∏
q=1

U (ρη,q | 0, 1) ×

L∏
ℓ=1

MV N
(
uℓ | uℓ−1, τ2

ω,ℓQ(ρω)
)

×
L∏

ℓ=1
IG

(
τ2

ω,ℓ | aω,ℓ, bω,ℓ

)
× U (ρω | 0, 1) .

(10)
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Methods
Model (6) was fit by Shannon et al. (2025) using 593,368 FIA plot
measurements from 2008-2021 across the CONUS.
Percent tree canopy cover (TCC) was used as a single covariate
(P = Q = 1).
M MCMC samples of µj,ℓ were used to estimate linear trends over
time, whose posterior inference is available via

θm
j =

∑L
ℓ=1

(
ℓ − ℓ̄

) (
µm

j,ℓ − µ̄m
j

)
∑L

ℓ=1

(
ℓ − ℓ̄

)2 , m = 1, . . . M, (11)

where
ℓ̄ = 1

L
∑L

ℓ=1 ℓ.

µ̄m
j = 1

L
∑L

ℓ=1 µm
j,ℓ.

Trend significance is determined by observing if the 95% credible
interval for θj overlaps zero.
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nj,ℓ
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In 2013 the Rim Fire burned 257,314 acres and is clearly seen in the
SAE model estimates.
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Direct Estimates

Assume individual plot-level measurements
are unavailable, and instead we only have
direct estimates for small areas of interest.
The direct estimate mean for county j in
year ℓ is

µ̂j,ℓ = 1
nj,ℓ

nj,ℓ∑
i=1

yi,j,ℓ. (12)

The associated estimate variance is

σ̂2
j,ℓ = 1

nj,ℓ(nj,ℓ − 1)

nj,ℓ∑
i=1

(yi,j,ℓ − µ̂j,ℓ)2. (13)
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Missing Direct Estimates
When nj,ℓ ∈ {0, 1}, direct estimates (12) and/or (13) will be
missing.
Direct estimate (13) is also missing when plot measurements in
county j at year ℓ are identical.
In these cases, we still aim to produce an estimate for µj,ℓ.
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Dynamic Area-level Plot-aggregate Model
The model proposed by Shannon et al. (2024) is

µ̂j,ℓ = µj,ℓ + δj,ℓ,

µj,ℓ = xT
j,ℓβ + x̃T

j,ℓηj + uj,ℓ + εj,ℓ,

u ∼ MV N
(
0, σ2

uR(ρu) ⊗ A(αu)
)

,

(14)

where
δj,ℓ

ind∼ N(0, σ2
j,ℓ) and ϵj,ℓ

iid∼ N(0, σ2
ϵ ).

u = (uT
1 , . . . , uT

L)T is the length J × L vector of spatio-temporal
random effects.
R(ρu) = (D − ρuW)−1 is the J × J CAR correlation matrix.
A(αηt) is a L × L first order autoregressive correlation matrix with
temporal correlation parameter αu and ijth element equal to α

|i−j|
u .
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Priors and Likelihood
The joint posterior distribution for all parameters in model (14) is then proportional to
the product of the likelihood times priors, which is given as

J∏
j=1

L∏
ℓ=1

N
(
µ̂j,ℓ | µj,ℓ, σ2

j,ℓ

)
×

J∏
j=1

L∏
ℓ=1

N
(
µj,ℓ | xT

j,ℓβ + x̃T
j,ℓηj + uj,ℓ, σ2

ϵ

)
×

MV N (β | µβ, Σβ) ×
J∏

j=1

L∏
ℓ=1

IG

(
σ2

j,ℓ | nj,ℓ

2 ,
(nj,ℓ − 1) σ̂2

j,ℓ

2

)
×

IG
(
σ2

ϵ | aϵ, bϵ

)
× MV N

(
u | 0, σ2

uR(ρu) ⊗ A(αu)
)

×

IG
(
σ2

u | au, bu

)
× U (ρu | aρ, bρ) × U (αu | aα, bα) ×

Q∏
q=1

MV N
(
η∗

q | 0, σ2
η,qR(ρη,q)

)
×

Q∏
q=1

IG
(
σ2

η,q | aη,q, bη,q

)
×

Q∏
q=1

U (ρη,q | 0, 1) .
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Results

Model (14) was fit by Shannon et al. (2024) using 32,885 annual
county-level direct estimates from 2008-2021 across the CONUS.

Percent tree canopy cover (TCC) was used as a single covariate
(P = Q = 1).

Linear trends were estimated as in (11).

ESM University of Michigan April 4, 2025 39 / 56



ESM University of Michigan April 4, 2025 40 / 56



13 16 12 16 19 13 12 9 10 11 14 10 11 11

0

20

40

0

25

50

75

100

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Year

C
ar

bo
n

(M
g/

ha
)

T
C

C
(%

)

Estimator Direct Full model TCC

Washtenaw, Michigan

ESM University of Michigan April 4, 2025 41 / 56



25°N

30°N

35°N

40°N

45°N

-12
0°W

-11
0°W

-10
0°W -90

°W
-80

°W

Carbon (Mg/ha/year)

-1.0 -0.5 0.0 0.5 1.0

ESM University of Michigan April 4, 2025 42 / 56



25°N

30°N

35°N

40°N

45°N

12
0°

W
11

0°
W

10
0°

W
 90
°W

 80
°W

Carbon (Mg/ha/year)

-1.0 -0.5 0.0 0.5 1.0

ESM University of Michigan April 4, 2025 43 / 56



ESM University of Michigan April 4, 2025 44 / 56



13 13 5 11 13 12 15 1 15 10 8 15 11 7

0

30

60

90

0

25

50

75

100

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Year

C
ar

bo
n

(M
g/

ha
)

T
C

C
(%

)

Estimator Direct Full model TCC

Calhoun, Florida

In 2018 the Hurricane Michael damaged much of the county’s
forestland.

ESM University of Michigan April 4, 2025 45 / 56



Figure 4: Photo courtesy of Jarek Nowak, Ph.D., Florida Forest Service.
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Next Steps

Fit continue unit-level spatio-temporal SAE model.

Fit dynamic unit-level spatio-temporal SAE model.

Perform model comparison to explore if/how increasing
information helps with FIA’s desired annual county-level
estimates.

Extend models to multivariate settings for forest carbon pools.

Explore patterns of changing carbon and work on attribution
modeling.
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Thank you
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Simulation Study
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Priors and Likelihood
The joint posterior distribution for all parameters in model (6) is then proportional to
the product of the likelihood times priors, which is given as

L∏
ℓ=1

J∏
j=1

nj,ℓ∏
i=1

N
(
yi,j,ℓ | xT

j,ℓβℓ + x̃T
j,ℓηj + uj,ℓ, σ2

ℓ

)
×

L∏
ℓ=1

IG
(
σ2

ℓ | aσ, bσ

)
×

MV N (β0 | µ0, Σ0) ×
L∏

ℓ=1
MV N

(
βℓ | βℓ−1, Σξ

)
× IW (Σξ | νξ, Hξ) ×

Q∏
q=1

MV N
(
η∗

q | 0, τ2
η,qQ(ρη,q)

)
×

Q∏
q=1

IG
(
τ2

η,q | aη,q, bη,q

)
×

Q∏
q=1

U (ρη,q | 0, 1) ×

L∏
ℓ=1

MV N
(
uℓ | uℓ−1, τ2

ω,ℓQ(ρω)
)

×
L∏

ℓ=1
IG

(
τ2

ω,ℓ | aω,ℓ, bω,ℓ

)
× U (ρω | 0, 1) .

(15)
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Priors and Likelihood
The joint posterior distribution for all parameters in model (14) is then proportional to
the product of the likelihood times priors, which is given as

J∏
j=1

L∏
ℓ=1

N
(
µ̂j,ℓ | µj,ℓ, σ2

j,ℓ

)
×

J∏
j=1

L∏
ℓ=1

N
(
µj,ℓ | xT

j,ℓβ + x̃T
j,ℓηj + uj,ℓ, σ2

ϵ

)
×

MV N (β | µβ, Σβ) ×
J∏

j=1

L∏
ℓ=1

IG

(
σ2

j,ℓ | nj,ℓ

2 ,
(nj,ℓ − 1) σ̂2

j,ℓ

2

)
×

IG
(
σ2

ϵ | aϵ, bϵ

)
× MV N

(
u | 0, σ2

uR(ρu) ⊗ A(αu)
)

×

IG
(
σ2

u | au, bu

)
× U (ρu | aρ, bρ) × U (αu | aα, bα) ×

Q∏
q=1

MV N
(
η∗

q | 0, σ2
η,qR(ρη,q)

)
×

Q∏
q=1

IG
(
σ2

η,q | aη,q, bη,q

)
×

Q∏
q=1

U (ρη,q | 0, 1) .
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