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National Forest Inventory Data

National Forest Inventory (NFI)
programs provide critical information
on forest health, sustainable
management, and ecosystem change.

Users require higher spatial and
temporal resolution forest status and
change parameter estimates.

Design-based estimates are limited to
large spatial and temporal scales.
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Small Area Estimation

Small area estimation (SAE) methods
have gained attention for estimating
forest parameters in data-sparse
settings.

▶ employ statistical models to relate
forest response variables to auxiliary
data.

▶ improve accuracy and precision over
design-based approaches.
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Fay-Herriot Model

The Fay-Herriot (FH) model is widely
used in SAE applications for NFI
data.

▶ fit to small area direct estimates.
▶ does not require exact plot locations.

Direct estimates are often missing
when sample sizes are too small or
measurements are homogeneous.
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Bayesian Spatio-Temporal SAE Model

We propose a Bayesian spatio-temporal SAE model of live forest
carbon density (LFCD) that

directly uses NFI plot-level measurements,

incorporates auxiliary covariates,

accommodates spatially and temporally varying regression
coefficients,

appropriately quantifies uncertainty.
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Data

We have 593,368 United States Forest Service Forest Inventory
and Analysis (FIA) plot measurements collected across 3,108
counties in the CONUS from 2008 to 2021.

▶ Exact plot locations are unknown, but plot measurements may be
assigned to counties.

We leverage remotely sensed percent tree canopy cover (TCC) as a
covariate.

▶ Averaged among all pixels within given county and year.
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Notation

Let
j = 1, . . . , J index counties,
t = 1, . . . , T index discrete years,
i = 1, . . . , nj,t index FIA plots measured in county j in year t,

▶ Note, we may have nj,t = 0 for some j and t.
yi,j,t be the LFCD (Mg/ha) at FIA plot i in county j in year t,
µj,t be the latent (unobserved) mean LFCD for county j in year t,
xj,t = (1, x1,j,t, . . . xP,j,t)T be the length P + 1 vector of covarites
associated with county j in year t,
x̃j,t = (x̃1,j,t, . . . x̃Q,j,t)T be the length Q ⊆ P vector of covariates
with space-varying impact on µj,t.
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Model

For county j in year t, the proposed model is then

yi,j,t = xT
j,tβt + x̃T

j,tηj + uj,t︸ ︷︷ ︸
µj,t

+εi,j,t, i = 1, . . . , nj,t, (1)

where
εi,j,t

ind∼ N(0, σ2
t ),

βt is a length P + 1 vector of temporally-varying regression
coefficients,
ηj is a length Q vector of space-varying regression coefficients,
uj,t is a dynamically evolving spatio-temporal intercept term.
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Temporally-varying Regression Coefficients

βt is modeled dynamically as

βt = βt−1 + ξt, with (2)

ξt
ind∼ MV N (0, Σξ) , t = 1, . . . , T, (3)

which allows the effect of covariates in xj,t to have time-varying impact
on the response according to the covariance structure in Σξ.
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Space-varying Regression Coefficients

Writing ηj = (η1,j , . . . , ηQ,j)T and collecting η∗
q = (ηq,1, . . . , ηq,J)T, we

model η∗
q as a conditional autoregressive (CAR) random effect,

η∗
q ∼ MV N

(
0, τ2

η,qQ(ρη,q)
)

, q = 1, . . . , Q, (4)

where
τ2

η,q is a scalar variance parameter,
ρη,q is a spatial correlation parameter (0 < ρη,q < 1),
Q(ρη,q) is a J × J correlation matrix reflecting the county
neighborhood structure. (See Banerjee et al. (2004) for details).
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Dynamic Spatio-temporal Intercept

uj,t is modeled as a dynamically evolving CAR spatial random effect,

uj,t = uj,t−1 + ωj,t, (5)

where uj,0 ≡ 0 for all j.

Then, collecting all ωj,t for time t as ωt = (ω1,t, . . . , ωJ,t)T, we specify a
CAR spatial structure for ωt as

ωt ∼ MV N
(
0, τ2

ω,tQ(ρω)
)

. (6)
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Direct Estimates

Traditionally, NFI-derived quantities of interest have been
estimated using design-based direct estimates.

Specifically, the direct estimate mean for µj,t is calculated as

µ̂j,t = 1
nj,t

njt∑
i=1

yi,j,t, (7)

with associated estimate variance

σ̂2
j,t = 1

nj,t(nj,t − 1)

njt∑
i=1

(yi,j,t − µ̂j,t)2. (8)
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Figure 1: Posterior mean values of live forest carbon density (µj,t).
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Figure 2: Posterior mean and 95% credible intervals of LFCD (µj,t) for
Tuolumne County, California, compared to direct estimate means (µ̂j,t) and
95% confidence intervals over time. Top row displays sample sizes (nj,t).
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Figure 3: Significant live forest carbon density trends (Mg/ha/year).
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Figure 4: Average
measures of bias, root
mean square error
(RMSE), coverage
percentage, and
coverage interval
widths for the model
and direct estimator
arranged according to
sample size nj,t.
Each point represents
the mean metric value
for estimating µj,t

averaged over R = 100
simulated population
replicates.
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Thank you

Shannon et al. (2025)
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